
Fall 2010/2011

Outline of the Lecture
� Defining BYTE and SBYTE Data
� Defining Strings
� Defining WORD and SWORD Data
� Defining DWORD and SDWORD Data
� Defining QWORD Data
� Defining TBYTE Data
� Defining Real Number Data
� Adding Variables to the AddSub
� Declaring Uninitialized Data
� Mixing Code and Data

Defining BYTE and SBYTE Data
� The BYTE (define byte) and

more unsigned or signed values
value1 BYTE 'A'
value2 BYTE 0
value3 BYTE 255
value4 SBYTE −
value5 SBYTE +127

� A question mark (?) initializer leaves the variable uninitialized, implying it will be assigned a
value at runtime:

value6 BYTE ?
� The optional name is a label marking the variable’s offset from the beginning of its enclosing

segment. For example, if value
automatically located at offset 0001:

Value7 BYTE 10h
Value8 BYTE 20h

� The DB legacy directive can also define an 8
val1 DB 255 ; unsigned byte
val2 DB - 128 ; signed byte

Multiple Initializers
� If multiple initializers are used in the same data definition, its l

the first initialize , for example
list BYTE 10,20,30,40

� Assume list is located at offset 0000. If so, the value 10 is at offset
30 is at offset 0002, and 40 is at offset 0003
� Not all data definitions require labels

list BYTE 10,20,30,40
BYTE 50,60,70,80
BYTE 81,82,83,84

Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 7

Defining Data

nd SBYTE Data

Defining WORD and SWORD Data
Defining DWORD and SDWORD Data

Defining Real Number Data
Adding Variables to the AddSub Program
Declaring Uninitialized Data

Defining BYTE and SBYTE Data
(define byte) and SBYTE (define signed byte) directives allocate storage for one or

unsigned or signed values, for example:
value1 BYTE 'A' ; character constant
value2 BYTE 0 ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte

−128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte

initializer leaves the variable uninitialized, implying it will be assigned a

The optional name is a label marking the variable’s offset from the beginning of its enclosing

value7 is located at offset 0000 in the data segment
automatically located at offset 0001:

BYTE 10h
BYTE 20h

can also define an 8-bit variable, signed or unsigned:
val1 DB 255 ; unsigned byte

128 ; signed byte

If multiple initializers are used in the same data definition, its label refers only to the
for example

list BYTE 10,20,30,40
is located at offset 0000. If so, the value 10 is at offset 0000, 20 is at offset 0001,

30 is at offset 0002, and 40 is at offset 0003
Not all data definitions require labels

list BYTE 10,20,30,40
BYTE 50,60,70,80
BYTE 81,82,83,84

(define signed byte) directives allocate storage for one or

initializer leaves the variable uninitialized, implying it will be assigned a

The optional name is a label marking the variable’s offset from the beginning of its enclosing
is located at offset 0000 in the data segment, value8 is

bit variable, signed or unsigned:

abel refers only to the offset of

0000, 20 is at offset 0001,

� Within a single data definition, its initializers can use different radixes. Character and string
constants can be freely mixed.

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah, 20h, 'A', 22h

� To define a string of characters, enclose them in single or double quotation marks.
� null-terminated string

greeting1 BYTE "Good afternoon",0
greeting2 BYTE 'Good night',0

� Strings are an exception to the rule that byte values must be
exception, greeting1 would have to be defined as

greeting1 BYTE 'G','o','o','d'....etc.
� A string can be spread across multiple lines without having to

greeting1 BYTE "Welcome to the Encryption Demo prog ram "
BYTE "created by Kip Irvine.",0dh,0ah
BYTE "If you wish to modify this program, please

"
BYTE "send me a copy.",0dh,0ah,0

� The hexadecimal codes 0Dh
Example

menu BYTE "Checking Account",0dh,0ah,0dh,0ah,

DUP Operator
� The DUP operator allocates storage for multiple data items, using a constant expression as a

counter.
� It is particularly useful when allocating space for a string or array, and can be used with

initialized or uninitialized data:
BYTE 20 DUP(0)
BYTE 20 DUP(?)
BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTA CK"

Defining WORD and SWORD Data
word1 WORD 65535
word2 SWORD - 32768
word3 WORD ?

� The legacy DW directive can also be used:
val1 DW 65535
val2 DW - 32768

� Array of Words: Create an array of words by listing the elements or using the
DUP operator.

myList WORD 1,2,3,4,5
array WORD 5 DUP(?) ; 5 values, uninitialized

Within a single data definition, its initializers can use different radixes. Character and string
can be freely mixed.

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah, 20h, 'A', 22h

Defining Strings
To define a string of characters, enclose them in single or double quotation marks.

greeting1 BYTE "Good afternoon",0
greeting2 BYTE 'Good night',0

Strings are an exception to the rule that byte values must be separated by co
would have to be defined as

greeting1 BYTE 'G','o','o','d'....etc.
A string can be spread across multiple lines without having to supply a label for each line:

greeting1 BYTE "Welcome to the Encryption Demo prog ram "
BYTE "created by Kip Irvine.",0dh,0ah
BYTE "If you wish to modify this program, please

BYTE "send me a copy.",0dh,0ah,0
0Dh and 0Ah are alternately called end-of-line characters

menu BYTE "Checking Account",0dh,0ah,0dh,0ah,
"1. Create a new account",0dh,0ah,
"2. Open an existing account",0dh,0ah,
"3. Credit the account",0dh,0ah,
"4. Debit the account",0dh,0ah,
"5. Exit",0ah,0ah,
"Choice> ",0

he DUP operator allocates storage for multiple data items, using a constant expression as a

It is particularly useful when allocating space for a string or array, and can be used with
uninitialized data:

BYTE 20 DUP(0) ; 20 bytes, a ll equal to zero
BYTE 20 DUP(?) ; 20 bytes, uninitialized
BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTA CK"

Defining WORD and SWORD Data
word1 WORD 65535 ; largest unsigned value

32768 ; smallest signed value
 ; uninitialized, unsigned

The legacy DW directive can also be used:
val1 DW 65535 ; unsigned

32768 ; signed
Create an array of words by listing the elements or using the

myList WORD 1,2,3,4,5
array WORD 5 DUP(?) ; 5 values, uninitialized

Within a single data definition, its initializers can use different radixes. Character and string

To define a string of characters, enclose them in single or double quotation marks.

separated by commas. Without that

supply a label for each line:
greeting1 BYTE "Welcome to the Encryption Demo prog ram "

BYTE "created by Kip Irvine.",0dh,0ah
BYTE "If you wish to modify this program, please

line characters.

menu BYTE "Checking Account",0dh,0ah,0dh,0ah,
"1. Create a new account",0dh,0ah,
"2. Open an existing account",0dh,0ah,
"3. Credit the account",0dh,0ah,
"4. Debit the account",0dh,0ah,

he DUP operator allocates storage for multiple data items, using a constant expression as a

It is particularly useful when allocating space for a string or array, and can be used with

ll equal to zero

BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTA CK"

Create an array of words by listing the elements or using the

Defining DWORD and SDWORD Data
val1 DWORD 12345678h
val2 SDWORD − 2147483648
val3 DWORD 20 DUP(?)

� The legacy DD directive can also be used:
val1 DD 12345678h
val2 DD − 2147483648

� Array of Doublewords
myList DWORD 1,2,3,4,5
array D WORD 5 DUP(?) ; 5 values, uninitialized

Defining QWORD Data
quad1 QWORD 1234567812345678h
quad1 DQ 1234567812345678h

� This data type is primarily
Integers in 10-byte package)
� Each byte (exept the highest
� In the highest byte, the highest bit indicates the number

number is negative;if the highest byte =
� The integer range is -999,999,999,999,999,999

val1 TBYTE 1000000000123456789Ah
val1 DT 1000000000123456789Ah

� Constant initializers must be in hexa numbers
BCDVal1 TBYTE
BCDVal2 TBYTE

� REAL4 defines a 4-byte single
� REAL8 defines an 8-byte double
� REAL10 defines a 10-byte double extended

rVal1 REAL4 - 1.2
rVal2 REAL8 3.2E
rVal3 REAL10 4.6E+4096
ShortA rray REAL4 20 DUP(0.0)

� The legacy DD, DQ, and DT directives can define real numbers:
rVal1 DD - 1.2
rVal2 DQ 3.2E -
rVal3 DT 4.6E+4096

Adding Variables to the AddSub Program
TITLE Add and Subtract, Version 2 (AddSub2.asm)
; This program adds and subtracts 32
; integers and stores the sum in a variable.
INCLUDE Irvine32.inc
.data
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h

Defining DWORD and SDWORD Data
val1 DWORD 12345678h ; unsigned

2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array

DD directive can also be used:
val1 DD 12345678h ; unsigned

2147483648 ; signed

myList DWORD 1,2,3,4,5
WORD 5 DUP(?) ; 5 values, uninitialized

Defining QWORD Data
quad1 QWORD 1234567812345678h
quad1 DQ 1234567812345678h

Defining TBYTE Data
This data type is primarily for the storage of binary-coded decimal numbers

)
exept the highest) contains two BCD numbers.

the highest byte, the highest bit indicates the number’s sign (if the highest byte =80h, the
highest byte =00h, the number is positive).

999,999,999,999,999,999 to +999,999,999,999,999,999
val1 TBYTE 1000000000123456789Ah
val1 DT 1000000000123456789Ah

initializers must be in hexa numbers
 800000000000001234h ; valid
 -1234 ; invalid

Defining Real Number Data
byte single-precision real variable.
byte double-precision real,
byte double extended-precision real.

1.2
rVal2 REAL8 3.2E -260
rVal3 REAL10 4.6E+4096

rray REAL4 20 DUP(0.0)
The legacy DD, DQ, and DT directives can define real numbers:

1.2 ; short real
- 260 ; long real

rVal3 DT 4.6E+4096 ; extended-precision real

Adding Variables to the AddSub Program
TITLE Add and Subtract, Version 2 (AddSub2.asm)
; This program adds and subtracts 32 - bit unsigned
; integers and stores the sum in a variable.
INCLUDE Irvine32.inc

val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h

WORD 5 DUP(?) ; 5 values, uninitialized

coded decimal numbers (packed BCD

if the highest byte =80h, the

999,999,999,999,999,999

TITLE Add and Subtract, Version 2 (AddSub2.asm)

bit unsigned

finalVal DWORD ?
.code
main PROC
mov eax,val1 ; start with 10000h
add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit
main ENDP
END main

Declaring Uninitialized Data
� The .DATA? directive declares uninitialized data. When definiting a large block of

uninitialized data, the .DATA? directive reduces the size of a compiled program.
� the following code is declared efficiently:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
.data?
bigArray DWORD 5000 DUP(?) ; 20,000 bytes, not init ialized

� The following code, on the other hand, produces a compiled program 20,000 bytes larger:
.data
smallArray DWORD 10 DUP(0) ; 40 bytes
bigArray DWORD 5000 DUP(?) ; 20,000 bytes

Mixing Code and Data
� The assembler lets you switch back and forth between code and data in your programs.

.code
mov eax,ebx
.data
temp DWORD ?
.code
mov temp,eax
. . .

